300=1/2*800*x^2

Simple and best practice solution for 300=1/2*800*x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 300=1/2*800*x^2 equation:



300=1/2*800x^2
We move all terms to the left:
300-(1/2*800x^2)=0
Domain of the equation: 2*800x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-1/2*800x^2+300=0
We multiply all the terms by the denominator
300*2*800x^2-1=0
Wy multiply elements
480000x^2*8-1=0
Wy multiply elements
3840000x^2-1=0
a = 3840000; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·3840000·(-1)
Δ = 15360000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15360000}=\sqrt{2560000*6}=\sqrt{2560000}*\sqrt{6}=1600\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1600\sqrt{6}}{2*3840000}=\frac{0-1600\sqrt{6}}{7680000} =-\frac{1600\sqrt{6}}{7680000} =-\frac{\sqrt{6}}{4800} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1600\sqrt{6}}{2*3840000}=\frac{0+1600\sqrt{6}}{7680000} =\frac{1600\sqrt{6}}{7680000} =\frac{\sqrt{6}}{4800} $

See similar equations:

| (5x+4)=(1-2x) | | y/5-8=29 | | -6(x-7)=-9x+33 | | f/6-21=-26 | | 6(m+-1)=3(3m+5) | | 4.5x-7.5=1.5(-4x+3) | | 8+4✕f=4(3+f) | | (3x)(5x^2)=15x^2 | | 2-10=x-35 | | r-19.5=-4.2 | | 3w-10w=28 | | (50-2.5)t=0 | | r-15.3=-6.8 | | 50=x+14 | | 4x=6x=4 | | 2/10=x/35 | | 3x-3/3=9 | | 2x-16/2=3x | | 400=4x^2+80x-150 | | 9(-1+x)+1=12x+1 | | 8x+3=8x=27 | | (2n+20)+(4n-20)=n | | 8+2=5+x | | 8x-24/5=8 | | -5(6x+8)=20 | | 9x+30/2x-5=4 | | 8=9u-5u | | 1/2(3x-2)+4x=32 | | 4x+12=-3x-4 | | 3x+3=3,009 | | x-1=49 | | 6x-45=76 |

Equations solver categories